Advertisements

Home »  ISMS: Physical and environmental security

Advertisements
Advertisements

 ISMS: Physical and environmental security

The term physical and environmental security refers to measures taken to protect systems, buildings, and related supporting infrastructure against threats associated with their physical environment. Physical and environmental safeguards are often overlooked but are very important in protecting information. Physical security over past decades has become increasingly more difficult for organizations. Technology and computer environments now allow more compromises to occur due to increased vulnerabilities. USB hard drives, laptops, tablets and smartphones allow for information to be lost or stolen because of portability and mobile access. In the early days of computers, they were large mainframe computers only used by a few people and were secured in locked rooms. Today, desks are filled with desktop computers and mobile laptops that have access to company data from across the enterprise. Protecting data, networks and systems has become difficult to implement with mobile users able to take their computers out of the facilities. Fraud, vandalism, sabotage, accidents, and theft are increasing costs for organizations since the environments are becoming more “complex and dynamic”. Physical security becomes tougher to manage as technology increases with complexity, and more vulnerabilities are enabled. Buildings and rooms that house information and information technology systems must be afforded appropriate protection to avoid damage or unauthorized access to information and systems. In addition, the equipment housing this information (e.g., filing cabinets, data wiring, laptop computers, and portable disk drives) must be physically protected. Equipment theft is of primary concern, but other issues should be considered, such as damage or loss caused by fire, flood, and sensitivity to temperature extra. Physical and environmental security programs define the various measures or controls that protect organizations from loss of connectivity and availability of computer processing caused by theft, fire, flood, intentional destruction, unintentional damage, mechanical equipment failure and power failures. Physical security measures should be sufficient to deal with foreseeable threats and should be tested periodically for their effectiveness and functionality.

1. Determine which managers are responsible for planning, funding, and operations of physical security of the Data Center.
2. Review best practices and standards that can assist with evaluating physical security controls, such as ISO/IEC 27002:2013.
3. Establish a baseline by conducting a physical security controls gap assessment that will include the following as they relate to your campus Data Center:
• Environmental Controls
• Natural Disaster Controls
• Supporting Utility Controls
• Physical Protection and Access Controls
• System Reliability
• Physical Security Awareness and Training
• Contingency Plans
4. Determine whether an appropriate investment in physical security equipment (alarms, locks or other physical access controls, identification badges for high-security areas, etc.) has been made and if these controls have been tested and function correctly.
5. Provide responsible managers guidance in handling risks. For example, if the current investment in physical security controls is inadequate, this may allow unauthorized access to servers and network equipment. Inadequate funding for key positions with responsibility for IT physical security may result in poor monitoring, poor compliance with policies and standards, and overall poor physical security.
6. Maintain a secure repository of physical and environmental security controls and policies and establish timelines for their evaluation, update and modification.
7. Create a team of physical and environmental security auditors, outside of the management staff, to periodically assess the effectiveness of the measures taken and provide feedback on their usefulness and functionality.

The environment now more than ever need to be concerned with “physical theft of devices and equipment”. Mobile devices including cell phones, laptops, and hard drives are easily portable, thus making them more susceptible to theft. Theft of mobile devices is not the only way that attackers can get the data they want. An attacker could download sensitive data if he or she were to connect an external hard drive or flash drive to an unsecured computer. Leaving a USB flash drive on the ground outside of a building is another way that an attacker could steal data without ever gaining physical access. The malicious payload on the device infects an individual computer and possibly the entire network once an employee picks up the USB stick and inserts it into his or her computer. The physical element of security is often overlooked. The theft of hardware or vandalism could occur while working with administrative and technical controls. Organizations often focus on technical and administrative controls and as a result, breaches may not be discovered right away. Information and have different weaknesses, risks, and countermeasures than physical security. When people look at information security, they conspire how a person may penetrate the network using unauthorized means through wireless, software exploits or open ports. Security professionals with physical security in mind are concerned about the physical entrance of a building or environment and what damages that person may cause.
Examples of threats that physical security protects against are unauthorized access into areas and theft of mobile devices. Attackers can gain entry into secured areas through tailgating, hacking into access control smart cards or breaking in through doors. Defences for these threats include physical intrusion detection systems, alarm systems, and man traps. Mobile devices such as laptops, USB drives and tablets are easy targets because of portability. Control examples that could help stop theft are the use of RFID systems and cable locks. Physical security protects people, data, equipment, systems, facilities and company assets. Methods that physical security protects these assets is through site design and layout, environmental components, emergency response readiness, training, access control, intrusion detection, and power and fire protection. Business continuity or disaster recovery plans are required to reduce business interruption in times of natural disaster, explosion or sabotage.
One security professional cannot cover the entire spectrum of physical security. Professionals that work in this space do not always have a holistic understanding of physical security because of specialized variables and components that are needed to secure an organization. Individuals often specialize in specific fields, such as secure facility construction, risk assessment and analysis, secure data centre implementation, fire protection, intrusion detection systems (IDSs), closed-circuit television (CCTV) implementation, personal emergency response, training, legal, and regulatory aspects of physical security, and so on. Since physical security is usually further down the list of priorities, physical environments and facilities are not typically designed with security in mind. Aesthetics and functionality often take precedence over security concerns. If organizations focused on security in a holistic, organized and mature way, risks or causalities could be minimized Organizations can be held monetarily and criminally liable for not practising due diligence. Examples of lawsuits that organizations can be held accountable include an unsecured laptop left by an employee containing PII was stolen and a company did not follow fire codes and death resulted because people could not escape through a locked exit door. Physical security teams must implement a security program that balances security measures and safety concerns. Physical security should always use what is called a “defence in depth” approach to reinforce security through different controls. Multiple security controls in places make it tougher for attackers to get to the valuable company resources. Security needs to increase productivity in the environment by protecting assets. Good security practices in place allowing employees to feel safe so they can focus on their tasks, and force attackers to pray on easier targets. We should think about how physical security can affect our organization using the CIA triad – confidentiality, integrity, and availability. We look at the areas of security that can affect the confidentiality of data, the integrity of assets and the availability of company resources. Physical security must plan how to protect employee lives and facilities. The first priority of physical security is to ensure that all personnel is safe. The second is to secure company assets and restore IT operations if a natural disaster happens. In the event of an explosion or fire, the right suppression methods must be utilized to contain the event. Using the wrong suppression agent can not only make the situation worse but also hurt people. There multiple types of suppressions that can be used to contain fires. Water, gases, and powders are used in different scenarios to extinguish one of the four fire elements: heat, oxygen, fuel, chemical reaction.

Planning For a Physical Security Program

Adequate controls are not present to control the physical environment without a plan in place. The company must create a team that is responsible for designing a physical security program when planning for security. The physical security team should continually improve the program using the defence in depth method.
Defence in depth is a concept used to secure assets and protect life through multiple layers of security. If an attacker compromises one layer, he will still have to penetrate the additional layers to obtain an asset. To give an example of this concept, let us say that you have a computer that an attacker wants to access. The computer is located inside a locked room within a building. The building has an access control system in place, and there is a fence with a guard outside. If the adversary only needed to climb the fence to get to the data, only one level of security is in place to stop an intruder. If we added security guards, access control systems, locked doors, this would make the task more difficult for the person trying to acquire a resource. In addition, logging into the computers and servers should require a smart card or token in addition to a pin or password in order to access proprietary data. These security measures working together provides multiple levels of security. To ensure that the security controls are working effectively, metrics should be used.
The team needs to identify key performance indicators (KPIs) to enhance the security program  KPIs should be monitored by period, quarter, current year, and over years. Metrics depend on the industry and organization. KPIs vary between corporations because of requirements and focus the organization has Organizations need to use a “performance-based approach” when measuring the physical security program. These metrics gauge how well the program is operating
towards achieving the organization’s objectives. Data can be used to make informed decisions to lower risk in the most cost-effective method. Without these metrics, the security program will not be able to effectively manage security controls. The following are key performance indicators to measure the effectiveness of the security program:

  • Number of Unsuccessful Crimes
  • Number of successful crimes
  • Number of unsuccessful disruptions
  • Number of successful disruptions
  • The time between detection, assessment and recovery steps
  • The business impact of disruptions
  • Number of false-positive detection alerts
  • Time to restore the operational environment
  • The financial loss of a successful crime
  • The financial loss of a successful disruption

Once key performance indicators are tracked, they can confirm the right objectives are being met. Metrics identify acceptable levels of risk for the organization through the use of input and output process measures. As an example, input process measures could include asset inventory and resource requirements. Outputs could include security assessments completed versus planned, and countermeasures deployed. These inputs and outputs when combined in this example, illustrates the facility asset inventory is secured. Organizations are required to abide by federal laws and regulations.

The organization can verify if resources are allocated correctly through consistent monitoring of metrics. For an example, six security guards work during off hours. Four guards work from 4 P.M. until 1 A.M. The other two work from 1 A.M. until 9 A.M. and at all times at least one guard is required to be at the front gate. A report containing intrusion detection data, such as when and where alarm faults occurred, break-ins and theft at the warehouse occurred from 1:34 until 4:13 A.M was discovered. The countermeasure of placing a guard from the afternoon shift at the warehouse during the early morning shift was initiated. Two months later, a report concluded that the break-ins at the warehouse went down 95%. As a result, the organization had a lower amount of break-ins and theft when resources were properly allocated. Utilizing metrics can be impactful to the company because it can show if the organization is making the right decisions. The organization’s threat profile depends on the nature of the business. It decides what types and levels of risks it should accept, transfer, avoid or mitigate. A threat profile includes targets, threats, threat agents, threat scenarios and vulnerabilities. The organization must have a clear understanding of how all the threat components work together to create a threat profile. After risks are assessed, the team can go after priority items. The relationships of risks, baselines, and countermeasures that an organization can apply to define acceptable risk levels used in the threat modelling process can be seen in this example:

Criminals should have to go through multiple layers of security to gain access to an asset. Businesses need to try to minimize incidents from occurring, and if they do, steps need to be in place to deal with them. Incidents must be detected. It is impossible to prevent every intrusion, but all must be detected to minimize impact to the organization. Metrics from incidents including the cost of replacement, business impact, where, what time and what frequency did breaches occur, should be used to analyze what types of disruptions are impacting business operations.
Baselines are minimum security requirements that utilize metrics for program monitoring. When countermeasures are meeting the established baseline, the physical security program is successful and implemented effectively. Physical security baselines examples include: commercial or industrial locks are required in private areas, bollards (concrete pillars that block vehicles from driving into buildings) must be used in front of all public entrances, and door delay controls are mandatory on server room doors. Physical security threats can be internal or external. Employees are considered internal threats and can utilize their knowledge of building layouts and where assets are located to steal or vandalize assets. Employees have the ability to gain access to areas unobserved because of their job duties. Predicting attacks from insiders it difficult to detect because of their access permissions. Fire, water, and environmental failures are also internal threats. An example of insider threat could be a security guard working off hours with access into all areas decides to commit crimes without alarming other employees. Employees should have background checks conducted when hired to protect company assets. Government agencies and organizations that work with them have access to classified data. Jobs in this space may require polygraph tests in addition to the background clearance. Collusion is a type of insider threat that involves two or more employees. What is difficult about this risk is it can bypass procedural processes. Because of the nature of the specific job roles, employment screenings, rotation and separation of duties require more than one employee.
Natural disasters are considered external threats. External threats also possibly have a human factor such as protests, riots or bank robbers. These threats are primarily any outside force or person that does not have company ties. The following tasks must be completed before a physical security program can be implemented:

  • Conduct risk assessments to identify threats and weaknesses. Next, conduct a business Impact analysis of all threats.
  • Work with the legal department to ensure that the organization is meeting and maintaining law requirements.
  • To have management set an acceptable risk level for the security program.
  • Calculate baselines after the risk levels have been established.
  • Use performance metrics to track countermeasures.
  • Outline performance requirements and levels of protection from analysis results from:
    1. Deterrence
    2. Delaying
    3. Detection
    4. Assessment
    5. Response
  • Implement and identify these countermeasures for all program categories.
  • Countermeasures must be evaluated regularly against baselines assuring that acceptable risk levels are not being surpassed.

Physical Security Controls

Physical security manages and protects resources in the form of administrative, technical and physical controls. Access control systems, intrusion detection systems, and auditing systems are examples of technical controls. Some examples of administrative controls are site location, facility design, building construction, emergency response and employee controls. Physical control examples include types of building materials, perimeter security including fencing and locks and guards.
Deterrence, denial, detection then delay are the controls used for securing the environment. Attempts to obtain physical resources should be deterred through the use of fences, gates and guards around the perimeter. Locked doors and vaults protecting physical assets through denial. Physical Intrusion detection systems (IDS) and alarms are the next lines of defence and notify first responders if a breach is detected. If attackers reach their target, security measures such as a cable lock on a computer must delay the suspect from acquiring assets until guards or police arrive.

Administrative Controls

  1. Site and Facility Considerations
    All sites should have automated controls in place to protect the physical environment. The first line of defence must be administrative, technical and physical controls. The last line of defence should always be employees. Limiting human interaction with attackers reduces the risk of injury. These controls must be at the centre when applying and sustaining physical security to protect people, IT infrastructure and operations. Controls must be utilized so that attackers have an opposition to stop or delay them.
  2. Facility Plan
    The facility plan uses critical path analysis which is a systematic approach that identifies relationships between processes, operations, and applications. An example could be a company web server that needs access to the internet, power, climate control, computer hardware, storage location. In this example, resources that require securing are identified. Additionally, dependencies and interactions that support the business functions are reduced to only the mandatory ones because the processes, operations, and applications were identified. Critical path analysis is the first stage securing the IT infrastructure. IT infrastructure includes computers, servers, networking equipment, water, electricity, climate control, and buildings. Using current and future technologies, such as operating systems or mobile devices simultaneously is important. Current solutions improve, and new ones emerge as technologies involved. It is necessary to strategize how the older legacy systems and the new systems will merge together. The integration of old and new systems is called technology convergence. An organization could potentially have multiple systems doing the same function as technologies change, creating inefficiencies and risk to the company as it can be difficult to differentiate which system performs a particular task. In some cases, such as an e-commerce website, multiple servers are required to run in parallel, so there is not a single point of failure. Another example could be the intrusion alarm system, fax, and phone line utilizing a single phone line cable. One phone line that different systems connect to is a single point of failure and if an attacker compromised the line at one location, none of these systems would work. Having separate phone lines ran to each system would lower the risk of all three losing their connection at the same time. Parties including management, employees, and especially safety and security personnel, should contribute to the site plan. Management should be in the planning process so they can make sure funds are available for the project. Employee safety concerns should be addressed during the creation of the facility plan. Security staff can point out important aspects of physical security. Security goals for the business and the facility are supported further when their knowledge is used to help make the site plan.
  3. Site location
    Geographical location, price, and size are factors that involve thought when purchasing a site location. Security requirements should always be the primary concern when determining a location. Buying an existing facility or building a new one also needs to be considered. Site physical security involves deliberation of situational awareness. It is important to take into account that looting, riots, vandalism, and break-ins can occur. Other things to consider before determining a site is visibility, including the terrain around the building, facility markings, signs, neighbours, and area population. Accessibility to the site is important. Road access, traffic, and distance to train stations, freeways and airports are important aspects. Building facilities susceptible to these accounts should be avoided. Geographical areas prevalent to natural disasters are not ideal site locations. These threats cannot be avoided because natural disasters are not predictable. The IT staff, emergency personnel, management and disaster recovery team must be prepared and equipped to handle natural disasters. Disaster recovery plans contained within the business continuity plan is the overarching plan that lists the details necessary to recover from a tragedy
  4. Securing Data
    Data centres and server rooms that house IT or communications equipment must be off-limits to unauthorized individuals. These rooms have to be locked down to prevent attacks. These rooms should be protected and have limited access to those employees that require access for job duties. The more human-incompatible these rooms are, the less likely attacks are executed. Oxygen displacement, extremely dim lighting, cold temperatures and hard to manoeuvre due to little space, are methods used in creating a human inhospitable environment. These data centre rooms store mission-critical equipment and should be located in the middle of the facility and not in the basement, ground or top floors.

Physical Controls

Facilities need physical access controls in place that control, monitor and manage access. Categorizing building sections should be restricted, private or public. Different access control levels are needed to restrict zones that each employee may enter depending on their role. Many mechanisms exist that enable control and isolation access privileges at facilities. These mechanisms are intended to discourage and detect access from unauthorized individuals.

  1. Perimeter Security
    Mantraps, gates, fences and turnstiles are used outside of the facility to create an additional layer of security before accessing the building. Fences distinguish clear boundaries between protected and public areas. Materials used to create fences vary in types and strength. Protected assets dictate the necessary security levels of the fences. Types of fences include electrically charged, barbed wire, heat, motion or laser detection, concrete, and painted stripes on the ground. Gates are entry and exit points through a fence. To be an effective deterrent, gates must offer the same level of protection equal to the fence; otherwise, malicious people have the opportunity to circumvent the fence and use the gate as the point of intrusion. Construction of gates should consist of hardened hinges, locking mechanisms, and closing devices. Gates should be limited in number to consolidate resources needed to secure them. Dogs or surveillance cameras should monitor gates when guards are not present. Turnstiles are a type of gate that allows only one person to enter. They must provide the same protection level as the fence they are connected. Turnstiles operate by rotating in one direction like a revolving door and allow one individual to leave or enter the premises at a time. Mantraps are small rooms that prevent individuals from tailgating. The design of mantraps only allows one person may enter at a time. The idea is to trap the person trying to gain access by locking them inside until proof of identity is confirmed. If the individual has permission to enter, the inside door opens allowing entry. This is a security control measure that delays unauthorized people from entering the facility until security or police officers arrive.
  2. Badges
    Proof of identity is necessary for verifying if a person is an employee or visitor. These cards come in the forms of name tags, badges and identification (ID) cards. Badges can also be smart cards that integrate with access control systems. Pictures, RFID tags, magnetic strips, computer chips and employee information are frequently included to help security validate the employee.
  3. Motion Detectors
    Motion detectors offer different technology options depending on necessity. They are used as intrusion detection devices and work in combination with alarm systems. Infrared motion detectors observe changes in infrared light patterns. Heat-based motion detectors sense changes in heat levels. Wave pattern motion detectors use ultrasonic or microwave frequencies that monitor changes in reflected patterns. Capacitance motion detectors monitor for changes in electrical or magnetic fields. Photoelectric motion detectors look for changes in light and are used in rooms that have little to no light. Passive audio motion detectors listen for unusual sounds.
  4. Intrusion Alarms
    Alarms monitor various sensors and detectors. These devices are door and window contacts, glass break detectors, motion detectors, water sensors, and so on. Status changes in the devices trigger the alarm. In hardwired systems, alarms notice the changes in status by the device by creating a wiring short. Types of alarms are deterrent, repellant, and notification. Deterrent alarms attempt to make it more difficult for attackers to get to major resources by closing doors and activating locks. Repellant alarms utilize loud sirens and bright lights in the attempt to force attackers off the site. Notification alarms send alarm signals through dial-up modems, internet access or GSM (cellular) means. The siren output may be silenced or audible depending on if the organization is trying to catch criminals in the act.

Technical Controls

The main focus of technical controls is access control because it is one of the most compromised areas of security. Smart cards are a technical control that can allow physical access into a building or secured room and securely log in to company networks and computers. Multiple layers of defence are needed for overlap to protect from attackers gaining direct access to company resources. Intrusion detection systems are technical controls that are essential because they detect an intrusion. Detection is a must because it notifies the security event. Awareness of the event allows the organization to respond and contain the incident. Audit trails and access logs must be continually monitored. They enable the organization to locate where breaches are occurring and how often. This information helps the security team reduce vulnerabilities.

  1. Smart Cards
    Token cards have microchips and integrated circuits built into the cards that process data. Microchips and integrated circuits enable the smart card to do two-factor authentication. This authentication control helps keeps unauthorized attackers or employees from accessing rooms they are not permitted to enter. Employee information is saved on the chip to help identify and authenticate the person. Two-factor authentication also protects computers, servers and data centres from unauthorized individuals. Assess will not be granted with possession of the card alone. A form of biometrics (something you are) or a PIN or password (something you know) must be entered to unlock the card to authenticate the user. Access token smart cards come in two types, contact and contactless. Contact smart cards have a contact point on the front of the card for data transfer. When the card is inserted, fingers from the device make a connection with chip contact points. The connection to the chip powers it and enables communication with the host device. Contactless smart cards use an antenna that communicates with electromagnetic waves. The electromagnetic signal provides power for the smart card and communicates with the card readers. Access token cards are thought to be impervious to tampering methods; however, these cards are not hacker proof. Security is provided through the complexity of the smart token. The smart token only allows the card to be read after the correct PIN is entered. Encryption methods keep malicious people from acquiring the data stored in the microchips. Smart cards also have the ability to delete data stored on it the card detects tampering. Cost is a disadvantage of smart card technology. It is expensive to create smart cards and purchase card readers. Smart cards are basically small computers and carry the same risks. As technology evolves, storage capacity and the ability to separate “security-critical computations” inside the smart cards. Smart cards can store keys used with encryption systems which helps security. The self-contained circuits and storage, permit the card to use encryption algorithms. The encryption algorithms allow for protected authorization that can be applied enterprise-wide.
  2. Proximity Readers and RFID: Access control systems use proximity readers to scan cards and determines if it has authorized access to enter the facility or area. Access control systems evaluate the permissions stored within the chip sent via radio frequency identification RFID. This technology utilizes the use of transmitters (for sending) and responders (for receiving).In physical access control, the use of proximity readers and access control cards that contain passive tags are used. Passive tags are powered from the proximity readers through an electromagnetic field generated by the card reader. A signal is sent to the reader when a card is swiped. The door unlocks once the signal is received and verified. Active tags contain batteries to self-power the RFID tag. Active tags have a battery power source built in that allows them to transmit signals further than passive tags. However, the cost of these are significantly higher, and their life is limited because of battery life. These are typically used to track high-value items. Readers can track movements and locate items when connected to the network and detection systems. If an asset is removed from certain areas, the organization can have the access control system trigger an alarm.
  3. Intrusion Detection, Guards and CCTV
    If the equipment is relocated without approval, intrusion detection systems (IDSs) can monitor and notify of unauthorized entries. IDSs are essential to security because the systems can send a warning if a specific event occurs or if access was attempted at an unusual time. Guards are a significant part of an intrusion detection system because they are more adaptable than other security aspects. Security officers may be fixed at one location or make rounds patrolling the campus. While making rounds, guards can verify the doors and windows are locked, and vaults are protected. Guards may be accountable for watching IDSs and CCTVs and can react to suspicious activity. They can call for backup or local police to help capture a suspect if necessary. Closed-circuit television or surveillance systems utilize cameras and recording equipment to provide visual protection. In areas that cameras monitor, having enough light in the right areas is essential. It might be too dim for the camera to capture decent video quality necessary to prosecute or identify persons of interest without enough light. Cameras can be fixed lens (not movable) or zoom lens (adjustable). In monitoring something that is stationary, you would want to use the right type of fixed lens depending on distance and width you are monitoring. Fixed lenses are available in wide, narrow or wide-angle. The zoom lens is recommended when viewing a target that might need an enlarged view. Another type of camera is a pan, tilt, zoom camera. These are dome style cameras that have the ability to move in all directions as well as zoom in. PTZ cameras are best for tracking suspects because the camera automatically detects and follows a suspect. PTZ cameras can auto track moving objects through mechanical or application methods. Cameras that use software applications have the ability to change targets and can filter out images that are stationary, saving bandwidth and storage.
  4.  Auditing Physical Access
    Auditing physical access control systems require the use logs and audit trails to surmise where and when a person gained false entry into the facility or attempted to break-in. The software and auditing tools are detective, not preventive. Consistent monitoring of audit trails and access logs are needed to act swiftly. The system has no value if the organization does not respond or response time is limited. Management needs to know when there are incidents so they can make security decisions. Adding additional resources to particular areas or at certain times might be necessary to protect the environment. Access logs and audit trails must include the date and time that the incident occurred. These logs should capture all failed access attempts, the person’s employee information, and location where the attacker tried to gain entry.

11.0 Physical and environmental security

A. 11.1 Secure areas

Objective:

To prevent unauthorized physical access, damage and interference to the organization’s information and Information processing facilities.

A. 11.1.1 Physical security perimeter

Control:

Security perimeters should be defined and used to protect areas that contain either sensitive or critical information and information processing facilities.

Implementation Guidelines

The following guidelines should be considered and implemented where appropriate for physical security perimeters:

  1. security perimeters should be defined and the siting and strength of each of the perimeters should depend on the security requirements of the assets within the perimeter and the results of a risk assessment;
  2. perimeters of a building or site containing information processing facilities should be physically sound [i.e. there should be no gaps in the perimeter or areas where a break-in could easily occur]; the exterior roof, walls and flooring of the site should be of solid construction and all external doors should be suitably protected against unauthorized access with control mechanisms,‘ (e.g. bars, alarms, locks); doors and windows should be locked when unattended and external protection should be considered for windows, particularly at ground level;
  3. a manned reception area or other means to control physical access to the site or building should be in place; access to sites and buildings should be restricted to authorized personnel only;
  4. physical barriers should where applicable,.be built to prevent unauthorized physical access and environmental contamination;
  5. all fire doors on a security perimeter should be alarmed, monitored and tested in conjunction with the walls to establish the required level of resistance in accordance with suitable regional, national and  international standards; they should operate in accordance with the local fire code in a failsafe manner;
  6. suitable intruder detection systems should be installed to national, regional or international standards and regularly tested to cover all external doors and accessible windows; unoccupied areas should be alarmed at all times; cover should also be provided for other areas,’e.g. computer room or communications rooms; ‘
  7. information processing facilities managed by the organization should be physically separated from those managed by external parties.

Other Information:

Physical protection can be achieved by creating one or more physical barriers around the organization’s premises and information processing facilities. The use of multiple barriers gives additional protection, where the failure of a single barrier does not mean that security is immediately compromised. A secure area may be a lockable office or several rooms surrounded by a continuous internal physical security barrier. Additional barriers and perimeters to control physical access may be needed between areas with different security requirements inside the security perimeter. Special attention to physical access security should be given in the case of buildings holding assets for multiple organizations. The application of physical controls, especially for the secure areas, should be adapted to the technical and economic circumstances of the organization, as set forth in the risk assessment.

A.11.1.2 Physical entry controls

Controls

Secure areas should be protected by appropriate entry controls to ensure that only authorized personnel are allowed access.

Implementation Guidelines

The following guidelines should be considered:

  1. the date and time of entry and departure of visitors should be recorded, and all visitors should be supervised unless their access has been previously approved; they should only be granted access for specific, authorized purposes and should be issued with instructions on the security requirements of the area and on emergency procedures. The identity of visitors should be authenticated by an appropriate means;
  2. access to areas where confidential information is processed or stored should be restricted to authorized individuals only by implementing appropriate access controls, e.g. by implementing a two-factor authentication mechanism such as an access card and secret PIN;
  3. a physical logbook or electronic audit trail of all access should be securely maintained and monitored;
  4. all employees, contractors and external parties should be required to wear some form of visible identification and should immediately notify security personnel if they encounter unescorted visitors and anyone not wearing visible identification;
  5. external party support service personnel should be granted restricted access to secure areas or confidential information processing facilities only when required: this access should be authorized and monitored;
  6. access rights to secure areas should be regularly reviewed and updated and revoked when necessary

A. 11.1.3 Securing offices, rooms and facilities

Control

Physical security for offices, rooms and facilities should be designed and applied. The following guidelines should be considered to secure offices, rooms and facilities:

  1. key facilities should be sited to avoid access by the public;
  2. where applicable, buildings should be unobtrusive and give a minimum indication of their purpose, with no obvious signs, outside or inside the building, identifying the presence of information processing activities;
  3. facilities should be configured to prevent confidential information or activities from being visible and audible from the outside. Electromagnetic shielding should also be considered as appropriate;
  4. directories and internal telephone books identifying locations of confidential information processing facilities should not be readily accessible to anyone unauthorized.

A. 11.1.4 Protecting against external and environmental threats.

Control

Physical protection against natural disasters, malicious attack or accidents should be designed and applied.

Implementation Guidelines

Specialist advice should be obtained on how to avoid damage from fire, flood, earthquake, explosion, civil unrest and other forms of natural or man-made disaster.

A.11.1.5 Working in secure areas

Control
Procedures for working in secure areas should be designed and applied.

Implementation Guidelines

The following guidelines should be considered:

  1. personnel should only be aware of the existence of, or activities within, a secure area on a need-to-know basis;
  2. unsupervised working in secure areas should be avoided both for safety reasons and to prevent
    opportunities for malicious activities;
  3. vacant secure areas should be physically locked and periodically reviewed;
  4. photographic, video, audio or other recording equipment, such as cameras in mobile devices, should not be allowed unless authorized.

The arrangements for working in secure areas include controls for the employees and external party users working in the secure area and they cover all activities taking place in the secure area.

A. 11.1.6 Delivery and loading areas

Control

Access points such as delivery and loading areas and other points where unauthorized persons could enter the premises should be controlled and, if possible, isolated from information processing facilities to avoid unauthorized access.

Implementation Guidelines

The following guidelines should be considered:

  1. access to a delivery and loading area from outside of the building should be restricted to identified and authorized personnel;
  2. the delivery and loading area should be designed so that supplies can be loaded and unloaded without delivery personnel gaining access to other parts of the building;
  3. the external doors of a delivery and loading area should be secured when the internal doors are opened;
  4. The incoming material should be inspected and examined for explosives, chemicals or other hazardous materials before it is moved from a delivery and loading area;
  5. The incoming material should be registered in accordance with asset management procedures  on entry to the site;
  6.  incoming and outgoing shipments should be physically segregated, where possible;
  7. The incoming material should be inspected for evidence of tampering en route. If such tampering‘ is discovered it should be immediately reported to security personnel.

Critical IT equipment, cabling and so on should be protected against physical damage, fire, flood, theft etc., both on- and off-site. Power supplies and cabling should be secured. The physical facility is usually the building(s) housing the system and network components. The physical characteristics of these structures determine the level of such physical threats as fire, roof leaks, or unauthorized access. Security perimeters should be used to protect areas that contain information and information processing facilities — using walls, controlled entry doors/gates, manned reception desks and similar measures. The general geographic location determines the characteristics of natural threats, which include earthquakes and flooding; man-made threats such as burglary, civil disorders, or interception of transmissions; and damaging nearby activities, including toxic chemical spills, explosions, and fires. Physical protection against damage from fire, flood, wind, earthquake, explosion, civil unrest and other forms of natural and man-made risk should be designed and implemented.

Ensuring complete physical security may be impossible, especially in an organization with a large area and multiple entry points and a very large number of employees customers and vendors interacting together. While many organization that have extensive security safeguards in place because of the nature of the services and information contained therein, organizations allow unfettered access to members of the public. General security safeguards should be in harmony with the overall atmosphere of the building while factoring in threats to the information contained within.

The security of facilities housing information resources can be protected by a number of means (e.g., locked doors with limited key distribution, locked machine cabinets, glass break sensors on windows, motion detectors, door alarms, fire suppression, appropriate heating, cooling and backup power). As with all security issues, the cost of implementing such protection measures has to be weighed against the risks. In some circumstances, the simple act of ensuring that all doors and windows in the room remained closed and locked while unoccupied might suffice. In another case, the sensitivity or criticality of the information contained on and the service provided by the building, room, or piece of equipment might be such that more stringent actions are taken.

Appropriate physical safeguards must be placed on equipment that stores or processes organizational data. In addition to physically securing this equipment, consideration must be given to other environmental related aspects that could, if not managed correctly, cause an interruption of service or availability and thus disrupt the organization’s mission. Careful thought must be given to ensure proper power (e.g., Uninterruptable Power Supplies, generator power backup, redundant power feeds), adequate fire protection, proper heating and cooling, and so on. These environmental safeguards must be commensurate with the sensitivity of the data contained in or processed by the equipment. Equipment removed from the premises is particularly vulnerable to being lost or theft. Therefore, the equipment must be protected when off-site, at home, or while in transit from one location to another.

A.11.2 Equipment

Objective:

To prevent loss, damage, theft or compromise f assets and interruption to the organization’s operations.

A.11.2.1 Equipment siting and protection

Control

Equipment should be sited and protected to reduce the risks from environmental threats and hazards, and opportunities for unauthorized access.

Implementation Guidelines

The following guidelines should be considered to protect equipment:

  1. equipment should be sited to minimize unnecessary access into work areas;
  2. information processing facilities handling sensitive data should be positioned carefully to reduce the risk of information being viewed by unauthorized persons during their use;
  3. storage facilities should be secured to avoid unauthorized access;
  4. items requiring special protection should be safeguarded to reduce the general level of protection required;.
  5. controls should be adopted to minimize the risk of potential physical and environmental threats. e.g. theft, fire. explosives, smoke, water (or water supply failure), dust, vibration. chemical effects. electrical supply interference, communications interference, electromagnetic radiation and vandalism;
  6. guidelines for eating, drinking and smoking in proximity to information processing facilities should be established;
  7. environmental conditions, such as temperature and humidity should be monitored for conditions which could adversely affect the operation of information processing facilities;
  8. lightning protection should be applied to all buildings and lightning protection filters should be fitted to all incoming power and communications lines;
  9. the use of special protection methods, such as keyboard membranes, should be considered for equipment in industrial environments;
  10. equipment processing confidential information should be protected to minimize the risk of information leakage due to electromagnetic emanation.

A.11.2.2 Supporting utilities

control 

Equipment should be protected from power failures and other disruptions caused by failures in supporting utilities.

Implementation Guidelines

Supporting utilities (e.g. electricity, telecommunications, water supply, gas, sewage, ventilation and air conditioning) should:

  1. conform to equipment manufacturer’s specifications and local legal requirements:
  2. be appraised regularly for their capacity to meet business growth and interactions with other supporting utilities;
  3. be inspected and tested regularly to ensure their proper functioning;
  4. if necessary, be alarmed to detect malfunctions;
  5. if necessary, have multiple feeds with diverse physical routing.

Emergency lighting and communications should be provided. Emergency switches and valves to cut off power, water, gas or other utilities should be located near emergency exits or equipment rooms.

Other Information

Additional redundancy for network connectivity can be obtained by means of multiple routes from more than one utility provider.

A.11.2.3 Cabling security

Control

Power and telecommunications cabling carrying data or supporting information services should be protected from interception, interference or damage.

Implementation Guidelines

The following guidelines for cabling security should be considered:

  1. power and telecommunications lines into information processing facilities should be underground, where possible, or subject to adequate alternative protection;
  2. power cables should be segregated from communications cables to prevent interference:
  3. for sensitive or critical systems further controls to consider include:
    1. installation of armoured conduit and locked rooms or boxes at inspection and termination points;
    2. use of electromagnetic shielding to protect the cables;
    3. initiation of technical sweeps and physical inspections for unauthorized devices being attached to the cables;
    4. controlled access to patch panels and cable rooms.

A.11.2.4 Equipment maintenance.

Control

Equipment should be correctly maintained to ensure its continued availability and integrity.

Implementation Guidelines

The following guidelines for equipment maintenance should be considered:

  1. equipment should be maintained in accordance with the supplier’s recommended service intervals. and specifications:
  2. only authorized maintenance personnel should carry out repairs and service equipment;
  3. records should be kept of all suspected or actual faults and of all preventive and corrective maintenance;
  4. appropriate controls should be implemented when equipment is scheduled for maintenance, taking into account whether this maintenance is performed by personnel on site or external to the
    organization; where necessary, confidential information should be cleared from the equipment or the maintenance personnel should be sufficiently cleared;
  5. all maintenance requirements imposed by insurance policies should be complied with;
  6. before putting equipment back into operation after its maintenance, it should be inspected to ensure that the equipment has not been tampered with and does not malfunction.

A.11.2.5 Removal of assets

Control.

Equipment, information or software should not be taken off-site without prior authorization.

Implementation Guidelines
The following guidelines should be considered:

  1. employees and external party users who have authority to permit off-site removal of assets should be identified;
  2. time limits for asset removal should be set and returns verified for compliance;
  3. where necessary and appropriate, assets should be recorded as being removed off-site and recorded when returned;
  4. the identity, role and affiliation of anyone who handles or uses assets should be documented and this documentation returned with the equipment, information or software.

Other Information

Spot checks, undertaken to detect unauthorized removal of assets, can also be performed to detect unauthorized recording devices, weapons, etc., and to prevent their entry into and exit from, the site. Such spot checks should be carried out in accordance with relevant legislation and regulations. Individuals should be made aware that spot checks are carried out, and the verifications should only be performed with authorization appropriate for the legal and regulatory requirements.

A.11.2.6 Security of equipment and assets off-premises

Control.

Security should be applied‘ to off-site assets taking into account the different risks of working outside the organization’s premises.

Implementation Guidelines

The use of any information storing and processing equipment outside the organization’s premises should be authorized by management. This applies to equipment owned by the organization and that equipment owned privately and used on behalf of the organization. The following guidelines should be considered for the protection of off-site equipment:

  1. equipment and media taken off premises should not be left unattended in public places;
  2. manufacturers’ instructions for protecting equipment should be observed at all times, e.g. protection against exposure to strong electromagnetic fields;
  3. controls for off-premises locations, such as home-working, teleworking and temporary sites should be determined by a risk assessment and suitable controls applied as appropriate, e.g. lockable filing cabinets, clear desk policy, access controls for computers and secure communication with the office
  4. when off-premises equipment is transferred among different individuals or external parties, a log should be maintained that defines the chain of custody for the equipment including at least names and organizations of those who are responsible for the equipment.

Risks, e.g. of damage, theft or eavesdropping, may vary considerably between locations and should be taken into account in determining the most appropriate controls.

Other Information

Information storing and processing equipment include all forms of personal computers, organizers, mobile phones, smart cards, paper or other forms, which is held for home working or being transported away from the normal work location. It may be appropriate to avoid the risk by discouraging certain employees from working off-site or by restricting their use of portable IT equipment;

A. 11.2.7 Secure disposal or re-use of equipment

Control

All items of equipment containing storage media should be verified to ensure that any sensitive data and licensed software has been removed or securely overwritten prior to disposal or re-use.

Implementation Guidelines

Equipment should be verified to ensure whether or not storage media is contained prior to disposal or re-use. Storage media containing confidential or copyrighted information should be physically destroyed or the information should be destroyed, deleted or overwritten using techniques to make the original information non-retrievable rather than using the standard delete or format function.

Other Information

Damaged equipment containing storage media may require a risk assessment to determine whether the items should be physically destroyed rather than sent for repair or discarded. Information can be compromised through careless disposal or re-use of equipment. In addition, to secure disk erasure, whole-disk encryption reduces the risk of disclosure of- confidential information when equipment is disposed of or redeployed, provided that:

  1. the encryption process is sufficiently strong and covers the entire disk including slack space, swap files, etc.;
  2. the encryption keys are long ‘enough to resist brute force attacks; .
  3. the encryption keys are themselves kept confidential (e.g. never stored on the same disk).

Techniques for securely overwriting storage media differ according to the storage media technology. Overwriting tools should be reviewed to make sure that they are applicable to the technology of the storage media.

11.2.8 Unattended user equipment

Control

Users should ensure that unattended equipment has appropriate protection. All users should be made aware of the security requirements and procedures for protecting unattended equipment, as well as their responsibilities for implementing such protection. Users should be advised to:

  1. terminate active sessions when finished. unless they can be secured by an appropriate locking ‘ mechanism, e.g. a password protected screen saver;
  2. log-off from applications or network services when no longer needed;
  3. secure computers or mobile devices from unauthorized use by a key lock or an equivalent control, e.g. password access, when not in use.

11.2.9 Clear desk and clear screen policy

Control

A clear desk policy for papers and removable storage media and a clear screen policy for information processing facilities should be adopted. The clear desk and clear screen policy should take into account the information classifications, legal and contractual requirements and the corresponding risks and cultural aspects of the organization. The following guidelines should be considered:

  1. sensitive or critical business information, e.g. on paper or on electronic storage media, should be locked away (ideally in a safe or cabinet or other forms of security furniture) when not required especially when the office is vacated.
  2. computers and terminals should be left logged off or protected with a screen and keyboard locking mechanism controlled by a password, token or similar user authentication mechanism when unattended and should be protected by key locks, passwords or other controls when not in use;
  3. unauthorised use of photocopiers and other reproduction technology (e.g. scanners, digital cameras) should be prevented;
  4. media containing sensitive or classified information should be removed from printers immediately.

Other Information

A clear desk/clear screen policy reduces the risks of unauthorised access, loss of and damage to information during and outside normal working hours. Safes or other forms of secure storage facilities might also protect information stored therein against disasters such as a fire. earthquake, flood or explosion. Consider the use of printers with PIN code function, so the originators are the only ones who can get their print-outs and only when standing next to the printer.

IT equipment should be maintained properly and disposed of securely. Information stored in equipment being disposed of, redistributed, or sold must be securely removed to prevent the disclosure of the information to unauthorized parties.
The system’s operation usually depends on supporting facilities such as electric power, heating and air conditioning, and telecommunications. The failure or substandard performance of these facilities may interrupt the operation of systems and may cause physical damage to system hardware or stored data. Equipment should be protected from disruptions caused by failures in supporting utilities such as HVAC, water supply and sewage. Power and telecommunications cabling carrying sensitive data should be protected from interception or damage. Maintenance contracts should be in place to make certain equipment will be correctly maintained to ensure its continued availability and integrity. Equipment, information or software should not be taken off-premises without prior authorization. Appropriate security measures should be applied to off-site equipment, taking into account the different risks of working outside the organization’s premises.
There are many types of equipment involved in the creation, collection, storage, manipulation, and/or transmission of information. Filing cabinets are used to store student transcripts. Computer systems are used to process and maintain intellectual property. Data networking equipment and cables are used to transmit voice and video communications. While the value of the equipment cannot be disregarded, the information stored in the device is arguably more valuable than the device itself. Physical and logical security safeguards should be based on the type of data being processed by the equipment. A sound asset management strategy is important to ensure all important equipment is tracked and secured appropriately.
All equipment containing storage media should be checked to ensure that sensitive data and licensed software have been removed or securely overwritten prior to secure disposal. In the event that equipment is lost or stolen there are a number of steps that must be taken. Immediately inform the Information security office (or those responsible for information security in the organization) of the loss. Providing as much information as possible about the contents (social security numbers, credit card numbers, protected health information, personally identifiable information, etc.), use (are there passwords on the device that could be used to access secure organization resources) and lifecycle (has the device been shared with others, has it been scrubbed recently of data within, etc.) of the stolen property is essential to determining the risk involved and the required actions involved in its recovery or remote wiping of data housed. Identification of IP addresses, hostnames, computer names registered or other associations with the stolen property provides additional information leading to its return or calculating the impacted loss. Evidence that the device is registered as a device management system (mobile management system, online location service, etc.) may enable the risk to be mitigated without the device’s recovery. Confirmation that the device is encrypted or backed up also affords data relative to its risk of loss to the organization. Finally have campus police been informed of the theft or loss in order to file appropriate reports for insurance purposes or data loss prevention activities?
Physical security begins with low visibility for secure locations. Unnecessary signage announcing high impact data facilities and network closets should be avoided. Mechanical locks with different keying options, some of which allow multiple key codes for added security are turning to electronic access solutions with entry audit capabilities. Complete access solutions consisting of electronic access control devices and remote monitoring capabilities are becoming more prevalent where access is granted to multitudes of people throughout the day. Fully networked RFID and biometric readers provide additional security where ID cards can be shared, lost or stolen.
Electronic access solutions eliminate managing multiple keys and provide real-time remote access monitoring and audit trail reporting meeting compliance requirements where required. Electronic access reporting can provide simple open/close information as well as additional data involving which credential was used, the time and duration of the event; and the type of access activated. In the event a security breach does occur, the audit trail can be used to forensically reconstruct a series of events leading up to the suspicious activity. Networking security access keeps equipment and spaces secure, connecting building security and equipment access through standardized security credential protocols. Electronic locks can communicate with IP security cameras or other security devices, expanding the scope and capabilities of a security network.
Naturally minimizing access to secure spaces is the best method of controlling the security of those facilities. Only those who absolutely need access should be among those granted that permission. Most technology can be managed remotely without actual physical access to the equipment. Where physical access is determined necessary, that access should be monitored, recorded and audited absolutely.
Fire, humidity, smoke and temperature control systems are all available which can provide monitoring capabilities and automated activity including alarms, fire suppression and alerts. These should all be deployed to keep systems operating with appropriate training (use of gas masks, fire extinguishers, emergency power shutdown management systems, etc.) provided for those responsible for their maintenance and safety. All of these systems and processes can be implemented over time but should be part of a physical security system for technology. Relatively inexpensive in cost, the assurance that equipment housing essential organization data is safe and secure is well worth the cost.

Example for Procedure for working in secure areas

1. Secure Areas
Objective: To prevent unauthorised physical access, damage and interference to the Organization’s information and assets
1.1 Physical Security Perimeter
(a) The information processing facilities must be protected by a physical security perimeter.
(b) Information Owners must ensure appropriate controls are in place to establish secure areas. Sensitive information and assets must be protected while considering the safety of personnel. Control selection must be supported by an appropriate Risk Assessment.
(c) Controls that must be applied are:
(i) security perimeters must be clearly defined, and the siting and strength of each of the perimeters must depend on the security requirements of the assets within the perimeter and the results of a risk assessment;
(ii) perimeters of a building or site containing information processing facilities must be physically sound (i.e. there must be no gaps in the perimeter or areas where a break-in could easily occur); the external walls of the site must be of solid construction and all external doors must be suitably protected against unauthorised access with control mechanisms, e.g. bars, alarms, locks, etc.; doors and windows must be locked when unattended and external protection must be considered for windows, particularly at ground level;
(iii) a manned reception area or other means to control physical access to the site or building must be in place; access to sites and buildings must be restricted to authorised personnel only;
(iv) physical barriers must, where applicable, be built to prevent unauthorised physical access and environmental contamination;
(v) all fire doors on a security perimeter must be alarmed, monitored, and tested in conjunction with the walls to establish the required level of resistance in accordance to suitable regional, national, and international standards;
(vi) suitable intruder detection systems must be installed to national, regional or international standards and regularly tested to cover all external doors and accessible windows; unoccupied areas must be alarmed at all times; cover must also be provided for other areas, e.g. computer room or communications rooms.
(d) A secure area may be a lockable office or several rooms surrounded by a continuous internal physical security barrier. Additional barriers and perimeters to control physical access may be needed between areas with different security requirements inside the security perimeter.
(e) Special consideration must be given towards physical access security when the facility houses multiple organisations or business units
1.2 Physical Entry Controls
(a) Secure areas must be protected by appropriate entry controls to ensure that only authorised personnel are allowed access.
(b) The following controls must be implemented:
(i) access to areas where sensitive information is processed or stored must be restricted to authorised personnel only;
(ii) authentication controls, e.g. access control card system, must be used to authorise and validate such access;
(iii) an audit trail of all access must be maintained;
(iv) visitors must be escorted by authorised personnel;
(v) visitors must only be allowed access for specific and authorised purposes;
(vi) the date and time of entry and departure of visitors must be recorded;
(vii) all employees and other authorised personnel must wear visible identification;
(viii) visitors must be issued badges or tags of a different colour than employees;
(ix) employees must notify security personnel when they encounter unescorted visitors or anyone not wearing visible identification;
(x) third-party support personnel may be granted restricted access only when required; their access must be authorised and monitored; and
(xi) access rights must be regularly reviewed
1.3 Securing Offices, Rooms and Facilities
(a) Controls to ensure the security of information and information systems located in University offices, rooms and other facilities must be designed, applied and documented.
(b) Information Owners and IT Security Officers must regularly assess the security of areas where sensitive information is processed and/or stored. Controls that may be implemented to reduce associated risks are:
(i) physical entry controls;
(ii) ensure sensitive information is stored properly when not in use and
(iii) directories that identify the locations of data centres and other areas where sensitive information is stored must not be made public
1.4 Protecting Against External and Environmental Threats
1.5 Physical protection against natural disasters, malicious attack or accidents must be designed and applied.
1.6 Information Owners, Data Center Managers, IT Security staff, planners and architects must incorporate – to the extent possible – physical security controls that protect against damage from fire, flood, earthquake, explosion, civil unrest and other forms of natural and man-made disaster. Consideration must be given to any security threats presented by neighbouring premises or streets. In addition to building code and fire regulations:
(a) combustible or hazardous materials must be stored at a safe distance from the secure area;
(b) bulk supplies, e.g. stationary, must not be stored in a secure area;
(c) backup equipment and backup media must be located at a safe distance to avoid damage from a disaster affecting the main site; and
(d) environmental alarm systems, fire suppression and firefighting systems must be installed
1.7 Working in Secure Areas
(a) Additional security controls and procedures must be used by personnel when working in secure areas.
(b) Information Owners and  IT Security Officers must identify and document requirements that apply to personnel who have been authorised to work in secure areas. Authorised personnel must be informed that:
(i) sensitive information cannot be discussed in a non-secure area;
(ii) sensitive information cannot be disclosed to personnel who do not have a need-to-know;
(iii) no type of photographic, smartphone, video, audio or other recording equipment can be brought into a secure area unless specifically authorised;
(iv) maintenance staff, cleaners and others who require periodic access to the secure area must be screened and their names added to an access list; and
(v) visitors must be authorised, logged and escorted
1.8 Delivery and Loading Areas
(a) Access points such as reception, delivery and loading areas and other points where unauthorised persons may enter the premises must be controlled and, if possible, isolated from secure areas or offices to avoid unauthorised access.
(b) Information Owners,  IT Security Officers, planners and architects must ensure that:
(i) access to a delivery and loading area from outside of the building must be restricted to identified and authorised personnel;
(ii) the delivery and loading area must be designed so that supplies can be unloaded without delivery personnel gaining access to other parts of the building;
(iii) the external doors of a delivery and loading area must be secured when the internal doors are opened;
(iv) loading docks and delivery areas must be regularly inspected and actively monitored;
(v) the incoming material must be inspected for potential threats before this material is moved from the delivery and loading area to the point of use;
(vi) the incoming material must be registered in accordance with asset management procedures on entry to the site; and
(vii) incoming and outgoing shipments must be physically segregated where possible

2. Equipment
Objective: To prevent loss, damage, theft or compromise of assets and interruption to the University’s operations
2.1 Equipment Siting and Protection
(a) Equipment must be protected to reduce the risks from unauthorised access, environmental threats and hazards.
(b) Information Owners, IT Security Officers, planners and architects must ensure that facilities are designed in a way that safeguards sensitive information and assets.
(c) Servers, routers, switches and other centralised computing equipment must be located in a room with access restricted to only those personnel who require it.
(d) Workstations, laptops, digital media and storage devices should be located and used in an area that is not accessible to the public.
(e) Equipment must be located, and monitors angled, in such a way that unauthorised persons cannot observe the display.
(f) Shared printers, scanners, copiers and fax machines should not be located in an area that is accessible to the public.
(g) Kiosks and other devices that are intended for public use must be clearly labelled and placed in a publicly accessible area
2.2 Supporting Utilities
(a) Equipment must be protected from power supply interruption and other disruptions caused by failures in supporting utilities.
(b) The following controls must be implemented to help ensure availability of critical services.
(c) All supporting utilities such as electricity, water supply, sewage, heating/ventilation and air conditioning must be adequate for the systems they are supporting. Support utilities must be regularly inspected and as appropriate tested to ensure their proper functioning and to reduce any risk from their malfunction or failure. A suitable electrical supply must be provided that conforms to the equipment manufacturer’s specifications.
(d) An uninterruptible power supply (UPS) to support orderly close down or continuous running is recommended for equipment supporting critical business operations. Power contingency plans must cover the action to be taken on failure of the UPS. A backup generator must be considered if processing is required to continue in case of a prolonged power failure. An adequate supply of fuel must be available to ensure that the generator can perform for a prolonged period. UPS equipment and generators must be regularly checked to ensure it has adequate capacity and is tested in accordance with the manufacturer’s recommendations. In addition, consideration could be given to using multiple power sources or, if the site is large, a separate power substation.
(e) Emergency power off switches must be located near emergency exits in equipment rooms to facilitate rapid power down in case of an emergency. Emergency lighting must be provided in case of main power failure.
(f) The water supply must be stable and adequate to supply air conditioning, humidification equipment and fire suppression systems (where used). Malfunctions in the water supply system may damage equipment or prevent fire suppression from acting effectively. An alarm system to detect malfunctions in the supporting utilities must be evaluated and installed if required.
(g) Telecommunications equipment must be connected to the utility provider by at least two diverse routes to prevent failure in one connection path removing voice services. Voice services must be adequate to meet local legal requirements for emergency communications
2.3 Cabling Security
(a) Power and telecommunications cabling carrying data or supporting information services must be protected from interception or damage.
(b) Power and telecommunications lines into information processing facilities must be underground, where possible, or subject to adequate alternative protection.
(c) When identified in a Risk Assessment, network cabling must be protected from unauthorised interception or damage by using a conduit and by avoiding routes through public areas.
(d) Power cables should be segregated from communications cables to prevent interference.
(e) Cables and equipment must be clearly marked to minimise handling errors such as accidental patching of wrong network cables. A documented patch list must be used to reduce the possibility of errors.
(f) When a Risk Assessment finds a need for more safeguards, consider:
(i) installation of rigid conduit and locked rooms or boxes at inspection and termination points;
(ii) use of alternative routings and/or transmission media providing appropriate security;
(iii) use of fibre optic cabling;
(iv) use of electromagnetic shielding to protect the cables;
(v) initiation of technical sweeps and physical inspections for unauthorised devices being attached to the cables; and
(vi) controlled access to patch panels and cable rooms
2.4 Equipment Maintenance
(a) Equipment must be correctly maintained to help ensure the availability and integrity of sensitive information and assets.
(b) When equipment is serviced Information Owners must consider the sensitivity of the information it holds and the value of the assets. The following controls must be applied:
(i) equipment must be maintained in accordance with the supplier’s recommended schedule and specifications;
(ii) only authorised maintenance personnel may carry out repairs and service equipment;
(iii) records must be kept of all suspected faults and all preventive and corrective maintenance;
(iv) maintenance must be scheduled at a time of day that limits interference with services or operations;
(v) users must be notified before equipment is taken off-line for maintenance.
(c) If off-site maintenance is required then the asset must be cleared of all sensitive information. If it’s not possible to de-sensitise assets before sending for maintenance then the CIO and Information Owner must consider the destruction of the asset
2.5 Removal of Assets
(a) The company owned equipment, information and software must not be removed from the premises without prior authorisation.
(b) Information Owners must establish a formal authorisation process for the removal of assets for relocation, loan, maintenance, disposal or any other purpose. Authorisation must include:
(i) item description and serial number(s);
(ii) information indicating where the asset will be located;
(iii) the removal date and return date;
(iv) the name of the individual responsible for the asset; and
(v) the reason for removal.
(c) The description and serial numbers must be verified when the asset is returned.
(d) Personnel must be informed of and accept responsibility for protection of the asset
2.6 Security of Equipment and Assets Off-Premises
(a) Assets must be safeguarded using documented security controls when off-site from the premises.
(b) Information Owners must ensure that equipment used or stored off-site is safeguarded in accordance with the sensitivity of the information and the value of the assets. Controls to apply include:
(i) encrypt sensitive data;
(ii) use a logical or physical access control mechanism (BIOS password, USB key, smart card) to protect against unauthorised access;
(iii) use a physical locking or similar mechanism to restrain the equipment;
(iv) ensure personnel are instructed on the proper use of the chosen controls. Personnel in possession of the equipment:
(v) must not leave it unattended in a public place;
(vi) must ensure the equipment is under his/her direct control at all times when traveling;
(vii) must take measure to prevent viewing of sensitive information by unauthorised personnel;
(viii) must not allow other persons to use the equipment;
(ix) must report loss or stolen equipment immediately
2.7 Secure Disposal or Re-Use of Equipment
(a) All data and software must be erased from equipment prior to disposal or redeployment.
(b) Information owners must consider the sensitivity of information and the value of the assets when determining whether or not hardware or media will be re-used or destroyed.
(c) Prior to re-use within the company:
(i) the integrity of the records must be maintained by adhering to the Records Management policy;
(ii) information and software must be backed up by the original Information Owner; and
(iii) the storage media must be wiped in accordance with the Asset Management Procedure (Disposal of Media).
(d) Storage media that will no longer be used  must be wiped by a method approved by the IT Security team, in compliance with the Asset Management Procedure. Asset inventories must be updated to record details of the data wiping including:
(i) asset identifier;
(ii) date of erasure;
(iii) names of personnel conducting the erasure.
(e) When a supplier conducts the data wiping there must be contractual and audit procedures to ensure complete destruction of the information. The organization must receive certification that the destruction has occurred
2.8 Unattended User Equipment
(a) Users must ensure unattended equipment has appropriate protection.
(b) User must safeguard unattended equipment by:
(i) terminating the active session when finished;
(ii) lock the session with a password protected screen saver or other approved mechanism;
(iii) logoff computers, servers, terminals and other devices when the session is finished;
(iv) enabling password protection on mobile devices, printers, kiosks and portable storage devices; and
(v) secure devices with a cable lock when enhanced physical security is justified
2.9 Clear Desk and Clear Screen Policy
(a) Users must safeguard sensitive information from unauthorised access, loss or damage.
(b) Users must secure their workspace when it cannot be monitored by authorised personnel. Secure workspaces by:
(i) clearing desktops and work areas;
(ii) locking hard copy sensitive information in an appropriate cabinet;
(iii) locking portable storage devices with sensitive information in an appropriate cabinet;
(iv) activating a password-protected screen saver;
(v) safeguarding incoming and outgoing mail;
(vi) retrieving documents from printers and fax machines; and
(vii) ensuring that sensitive hard copy documents no longer needed are placed in shredding bins, not recycle bins.
(c) When visitors, cleaning staff or other personnel without a “need-to-know” are in the area, safeguard sensitive information by:
(i) covering up and maintaining control of hard copy files;
(ii) blanking computer screens or activating the password-protected screen saver.
(d) Sensitive information must not be discussed in public or other areas where there is a risk of being overheard by unauthorised personnel

……………………………….End of Example…………………………….

Example of Clear Desk Policy

1.0 Introduction
The purpose of this policy is to establish a culture of security and trust for all employees at Sunbeam House Services (SHS). An effective clean desk effort involving the participation and support of all SHS employees can greatly protect paper documents that contain sensitive information about clients, customers and vendors. All employees should familiarize themselves with the guidelines of this policy.
Clear desk policy not only includes documents and notes, but also post-its, business card, and removable media (CDs, floppy disks, memory sticks). This policy also ensures SHS’s compliance with Data Protection Legislation.
2.0 SCOPE:
This policy represents SHS’s position and takes precedence over all other relevant policies which are developed at a local level. The main reason this policy is introduced is that:

  • It shows the right image when our customers visit the organisation.
  • It reduces the threat of security as passwords and confidential information gets locked away.
  • Scientific studies have shown that there is a reduction in stress with employees having a tidy desk.
  • Studies have shown a reduction in workplace accidents and spills.
  • It is generally accepted that a tidy desk is a sign of efficiency and effectiveness

3.0 POLICY
3.1 At known extended periods away from your desk, such as a lunch break, sensitive working papers are expected to be placed in locked drawers. Computer workstations must be locked when the workspace is unoccupied.
3.2 Computer workstations must be shut completely down at the end of the workday.
3.3 Any SHS Highly Restricted or Sensitive information must be removed from the desk and locked in a drawer when the desk is unoccupied and at the end of the workday.
3.4 File cabinets containing SHS Highly Restricted or Sensitive information must be kept closed and locked when not in use or when not attended.
3.5 Keys used for access to SHS Highly Restricted or Sensitive information must not be left at an unattended desk.
3.6 Laptops must be either locked with a locking cable or locked away in a drawer.
3.7 Passwords may not be left on sticky notes posted on or under a computer, nor may they be left written down in an accessible location.
3.8 Printouts containing SHS Highly Restricted or Sensitive information should be immediately removed from the printer.
3.9 Upon disposal SHS Highly Restricted and/or Sensitive documents should be shredded.
3.10 At the end of the working day the employee is expected to tidy their desk and to put away all office papers. SHS provides locking desks and filing cabinets for this purpose. All cups/plates, etc. are to be removed from desk areas.
3.11 SHS does not expect the policy to be implemented in a heavy-handed way but expect that employees will live with the spirit of the policy.
4.0 REDUCTION IN THE AMOUNT OF PAPER USED
4.1 This policy is designed to help reduce the amount of paper that is used in the SHS. This can reduce the amount of paper we use in the organisation as well as costly toners and cartridges – particularly from colour printers. It will also reduce the amount of filing space that we use.
4.2 Many people use print-offs as a form of backup against losing information from the computer systems. Staff are required to back all their information onto the server as and when required.
5.0 TIPS FOR A TIDY DESK
5.1 Allocate time in your calendar to clear away your paperwork.
5.2 Always clear your desktop before you go home that includes removing cups, dishes, glasses, etc.
5.3 Always clear your workspace before leaving for longer periods of time.
5.4 Consider scanning paper items and filing them electronically in your workstation.
5.5 Do not print off emails to read them. This generates increased amounts of clutter
5.6 Go through the things on your desk to make sure you need them, what you do not need, throw away.
5.7 Handle any piece of paper only once, act on it, file it, or put it in the bin.
5.8 If in doubt – throw it out. If you are unsure of whether a duplicate piece of sensitive documentation should be kept – it will probably be better to place it in the shred bin.
5.9 Lock away portable computing devices such as laptops or PDA devices
5.10 Lock your desk and filing cabinets at the end of the day.
5.11 Treat mass storage devices such as CDROM, DVD or USB drives as sensitive and secure them in a locked drawer.
5.12 Use the recycling bins for office paper no longer required.
6.0 ENFORCEMENT
Any employee found to have violated this policy may be subject to disciplinary action, up to and including termination of employment.

………………………………..End of Example ……………………………………..

Your Donation can make a difference

We have chosen to make our Resources freely and openly available on the web with the hope that it touches the lives of thousands of readers who visit us daily. We hope our blog has helped in enhancing the knowledge of our readers and added value to the organization and their implementers. We would request you to make donation large and small, so as to provide us with the resources needed to distribute, collect, digitize as it is becoming extremely difficult for us to afford the full cost of updating and enriching our site content. Your contribution will ensure that we can keep our blog up-to-date and add more of the rich resources — such as video — that make a difference for so many worldwide. Your donation will demonstrate your commitment to knowledge as a public good and is an important part of our overall sustainability plan. Your donation is also important in demonstrating to us how much you value the site and motivates us to devote more of our time to developing this blog.

Back to Home Page

If you need assistance or have any doubt and need to ask any question contact me at preteshbiswas@gmail.com or call Pretesh Biswas at +919923345531. You can also contribute to this discussion and I shall be happy to publish them. Your comment and suggestion are also welcome.

Advertisements

Leave a comment

Your email address will not be published. Required fields are marked *

Donation

Pretesh Biswas

Pretesh Biswas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 948 other subscribers

Advertisements